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Abstract— This paper considers the development of infor-
mation flow analyses to support resilient design and active
detection of adversaries in cyber physical systems (CPS). CPS
security, though well studied, suffers from fragmentation. In
this paper, we consider control systems as an abstraction of
CPS. Here, we use information flow analysis, a well established
set of methods developed in software security, to obtain a unified
framework that captures and extends results in control system
security. Specifically, we propose the Kullback Liebler (KL)
divergence as a causal measure of information flow, which
quantifies the effect of adversarial inputs on sensor outputs. We
show that the proposed measure characterizes the resilience of
control systems to specific attack strategies by relating the KL
divergence to optimal detection. We then relate information
flows to stealthy attack scenarios where an adversary can
bypass detection. Finally, this article examines active detection
mechanisms where a defender intelligently manipulates control
inputs or the system itself to elicit information flows from
an attacker’s malicious behavior. In all previous cases, we
demonstrate an ability to investigate and extend existing results
through the proposed information flow analyses.

I. INTRODUCTION

The security of cyber physical systems (CPS), which
integrate sensing, communication, and control in physical
spaces, has become a significant challenge in society [1].
Because CPS pervade our critical infrastructures including
transportation, manufacturing, health care, and energy, and
are often implemented using off the shelf components, they
offer both motivation and opportunity for potential attackers.
There exist precedence for attacks on CPS including Stuxnet
[2] and the Maroochy Shire incident [3] .

The ability to detect and characterize attacks is paramount
to the well being of CPS. In particular, to deliver counter-
measures for attacks on physical systems, the operator must
passively detect attacks in a timely manner. Moreover, the de-
fender must understand the set of stealthy attacks to motivate
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resilient design and active detection. Here, passive detection
refers to the defender’s use of information to ascertain if
the system is operating normally or under attack. Passive
detection techniques against attacks in CPS have been well
studied. For instance, traditional methods of fault detection
[4], [5] have been considered. However, such schemes are
usually designed to deal with benign failures. Consequently,
recent work considered the detection of stealthy malicious
adversaries who perform integrity attacks on sensor mea-
surements and control inputs [6], [7], [8].

Despite this previous work, the detection of arbitrary
attacks on CPS by adversaries with diverse information and
capabilities is not well categorized. In this article, we propose
using information flows as a means to quantify the detectabil-
ity of generic adversarial attack models. Information flow
analysis is an establised set of tools in software security
[9], which determine if the processes of one agent alter the
processes of another agent. We intend to use information flow
to develop a unified treatment of security in CPS, specifically
focusing on dynamical control aspects in this paper and
leaving general cyber-physical treatments to future work.

In this article, we propose the KL divergence as a quanti-
tative measure for information flow to determine the extent
to which an attacker’s inputs affect control system outputs.
To complement this measure, we introduce notions of con-
ditional ε-weak information flows and conditional ε-strong
information flows. Here, weak flows characterize stealthy
attack strategies conditioned on the system model and the de-
fender’s control policy. Moreover, strong flows define active
defense strategies which enable attack detection, conditioned
on the adversary’s policy. The resulting framework allows us
to recover, in a unified manner, a collection of prior results
in CPS security, obtained using different techniques, in a
number of papers. Moreover, in certain cases our framework
allows us to present refinements on existing results to reveal
additional insights. We summarize these instances below.

First, in section V, we leverage the results of [10] to
show that the KL divergence characterizes optimal passive
detectability by relating this measure to the optimal decay
rate of the probability of false alarm. Moreover, we show
through residue analysis that the KL divergence can, in many
instances, be efficiently evaluated.

Next, in section VI, we consider the study of conditional
weak information flows where we assume a defender chooses
an arbitrary control policy. We show there exist attacks which
generate 0 information flow if and only if the attacker’s sub-
system is not left invertible. This allows us to recover results
applied by [7] to analyze undetectable attack scenarios. In
addition, we show, under certain constraints on adversarial
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policy, that the information flow is a quadratic function of
the bias injected on measurement residues. This allow us to
recover results in [11] and [12] on false data injections which
used the residue bias as a constraint when studying impacts
of stealthy adversaries. We are able to refine these results by
presenting optimal detection guarantees for adversaries that
satisfy these constraints.

Finally, information flow analysis allows us to consider
results in active detection where the defender changes system
parameters [13], [14], [15] or the control policy itself [16],
[17], [18], [19], [20] to detect an attack. We specifically
consider replay attacks. Here, we recover results which show
that certain systems and control policies are vulnerable to
replay attacks [16]. However, unlike [16] which uses specific
continuity arguments, we use our framework to demonstrate
that replay attacks generate a conditional weak information
flow. We then recover results which state that introducing
physical watermarking to the defender’s policy [17] enables
detection of replay adversaries. We do this by directly
proving such a policy yields a conditional strong information
flow. We are able to extend previous results [17] by using
the calculated information flow to evaluate the detectability
of a replay attack in a system with physical watermarking.

To close, we note that [10] also leverages results relating
the KL divergence to optimal passive detectability in order
to define the notion of an ε-stealthy attack. This is subse-
quently used to analyze maximum estimation degradation by
a stealthy adversary in a scalar system. Our paper proposes
using the KL divergence not only as a tool to analyze specific
attacks, but as a unifying measure to characterize attacks and
defenses in control system security. We also argue that our
proposed framework is more general. Specifically, the notion
of conditional information flow allows us to both characterize
how an adversarial policy can be tuned to avoid detection by
specific defenders and consider how the defender can adjust
the system or his control policy to actively detect an attacker.
We will revisit [10] in a more technical context later.

The rest of the paper is summarized as follows. In section
II, we describe the system model. In section III, we introduce
a general model of an adversary in a CPS. Next, in section
IV we define an information flow in a CPS through the
KL divergence and relate it to existing notions in software
security. After, in section V, we motivate information flow
as a computable measure of optimal passive detectability. In
section VI, we discuss stealthy attack scenarios. Then, in
section VII, we consider information flow in the context of
active detection. We conclude the paper in section VIII.

II. SYSTEM MODEL

We consider a control system with discrete linear time
invariant model given below.

xk+1 = Axk +Buk + wk, yk = Cxk + vk. (1)

Here xk ∈ Rn is the state, uk ∈ Rp is the set of control
inputs and yk ∈ Rm is the set of sensor outputs. We let x0
be the initial state. Furthermore, wk ∼ N (0, Q) and vk ∼
N (0, R) are independent and identically distributed (IID)

process and measurement noise respectively. We consider a
finite horizon up to time T . The previous linear model of a
system is leveraged to derive the ensuing results related to
control system security. However, we stress that the paradigm
of information flows, to be introduced, can consider general
nonlinear and time varying dynamical systems.

We let Ik be the information available to the defender
at time k after making a measurement. From the de-
fender’s perspective, the initial state is unknown. However,
the defender knows that f(x0|I−1) = N (x̂0|−1, P0|−1).
The defender at time −1 is aware of the system model
M = {A,B,C,Q,R, x̂0|−1, P0|−1}. In total the defender’s
information at time k is given by

Ik = {y0:k, u0:k−1,M}. (2)

y0:k refers to the finite sequence {y0, · · · , yk}. Thus, the de-
fender is a central entity having knowledge of the dynamics
of the system and the history of outputs and inputs. We now
define an admissible defender control strategy.

Definition 1: An admissible defender control strategy
is a sequence of deterministic measureable functions
{U0,U1, · · · ,UT−1} where Uk : Ik → Rp for all k ∈
{0, 1, · · · , T − 1} and uk = Uk(Ik).

As a result, the defender computes a deterministic function
of the current information to generate an input. Finally,
we assume that the defender implements some passive bad
data detector to determine whether the system is operating
normally, denoted by a null hypothesis H0, or if there exist
an abnormality (or possible attack), denoted by a state of
H1. We define an admissible detector as follows.

Definition 2: An admissible defender detector strategy
is a sequence of deterministic measureable functions
{Ψ0,Ψ1, · · · ,ΨT−1} where Ψk : Ik → {H0,H1} for all
k ∈ {0, 1, · · · , T}.

Thus, at each time k, the defender intelligently constructs a
function Ψk which maps the defender’s available information
to a decision about the state of the system.

III. ATTACK MODEL

We now introduce an adversarial environment where an
attacker, depending on his capabilities and knowledge of the
system, can manipulate control inputs or sensor measure-
ments to degrade control and estimation performance. Here,
we formulate an adversary’s effect on a system by including
additive attacker inputs uak and dak as follows.

xk+1 = Axk +Buk +Bauak + wk, (3)
yk = Cxk +Dadak + vk. (4)

Ba characterizes the adversarial inputs, which could be a
subset of actuators the attacker usurps from the defender, or
his own inputs. Without loss of generality, we assume Ba is
full column rank. We assume the adversary can modify m′

sensors, S = {γ1, · · · , γm′} ⊆ {1, · · · ,m}. Therefore, we
define Da ∈ Rm×m′ entrywise as Da

u,v = 1u=γj ,v=j .

It is assumed that uak ∈ Rp′ and dak ∈ Rm′ are unknown
to the defender. Thus, a defender can only measure an
adversary’s effect on a system through sensor readings.
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We assume at a minimum that an adversary is aware of his
own attack history defined by {ua0:k−1, da0:k−1}. Additionally,
the adversary may be able to read a subset of control
inputs uk or sensor outputs yk. For instance, if the attacker
can modify channels, he may also be able to intercept
signals sent along these channels, thereby utilizing a man
in the middle attack. The portion of inputs and outputs the
attacker and defender can read are public and are denoted
upuk , y

pu
k . Finally, the adversary may have some imperfect

prior knowledge of the plant M̂, the controller Ĉ, and the
detector D̂. The adversary’s information is

Iak = {ua0:k−1, da0:k−1, u
pu
0:k−1, y

pu
0:k,M̂, Ĉ, D̂}. (5)

An admissible attack strategy leverages the attacker’s
information Iak to generate attack inputs for the system.

Definition 3: An admissible attack strategy on the plant
is a sequence of deterministic measureable functions
{Ua0 ,Da0 , · · · ,UaT−1,DaT−1,DaT } where Uak : Iak × upuk →
Rp′ for all k ∈ {0, 1, · · · , T − 1} and uak = Uak (Iak , u

pu
k ).

Additionally, Dak : Iak → Rm′ for all k ∈ {0, 1, · · · , T} and
dak = Dak(Iak ).

We note that while current state of the art adversarial
models for control systems consider attackers who do not
change their attack strategy, our model considers an attacker
with the freedom to leverage all his information to construct
an attack input.

IV. INFORMATION FLOWS IN PHYSICAL SYSTEMS

In software security, an information flow exists from a
private input to a public output if including the private input
changes the behavior of the public output. We wish to extend
this notion for adversarial inputs and sensor outputs of con-
trol systems. This section proposes a measure of information
flow to characterize the detectability of adversarial strategies.

We quantify the information flow through the KL diver-
gence between the distribution of the output under attack
and the distribution of the output under normal operation
[21]. For definiteness, we assume that all discrete time
stochastic processes of interest considered hereafter induce
(joint) distributions on the path space that are absolutely
continuous with respect to Lebesgue measure. Thus, they
possess densities in the usual sense. The KL divergence
between a distribution with probability density function p(x)
and a distribution with probability density function q(x) over
a sample space X is given by

DKL(p(x)||q(x)) =

∫
X

log

(
p(x)

q(x)

)
p(x)dx. (6)

This definition can be generalized to probability measures
[22]. The KL divergence has the following properties [21].

1) DKL(p(x)||q(x)) ≥ 0 .
2) DKL(p(x)||q(x)) = 0 if and only if p(x) = q(x)

almost everywhere.
3) DKL(p(x)||q(x)) 6= DKL(q(x)||p(x)).

We now use the KL divergence to define information flows
in a physical system. To begin, denote the conditional

distribution of the output based on apriori information as

DM,U0:k−1,Ua
0:k−1,D

a
0:k

y0:k = f(y0:k|I−1,U0:k−1,Ua0:k−1,Da0:k).

Definition 4: The information flow from the attacker’s
inputs (Ua0:T−1,Da0:T ) to the defender’s outputs y0:T is

IFT =
1

T + 1
DKL(DM,U0:T−1,Ua

0:T−1,D
a
0:T

y0:T ||DM,U0:T−1,0,0
y0:T ).

The proposed definition of information flows has many
desirable properties, which make it compatible with existing
measures of information flow in cyber security. First, the
KL divergence allows us to recover the property of nonin-
terference [23] in deterministic systems and probabilististic
noninterference [24] in stochastic systems. There exists inter-
ference from a high level user to a low level user if changing
high level inputs changes low level outputs.

In our model, the low level inputs are the defender’s
actions, the high level inputs are the attacker’s actions, and
the low level outputs are the defender’s outputs y0:k. In a
deterministic system, if an adversary’s actions change the
output y0:k, the KL divergence is infinite, reflecting the fact
that there is interference. However, if the output y0:k is
the same when the system is operating normally and under
attack, indicating noninterference, the KL divergence is 0.
There exists probabilistic interference from a high level user
to a low level user if changing high level inputs measurably
alters the distribution of low level outputs. IFT = 0 if and
only if there exists probabilistic noninterference.

Finally, we would like to be able to measure information
flow when there exists probabilistic interference. In software
security, this is done through research in quantitative infor-
mation flow. A majority of previous work in software secu-
rity [25] has proposed associative measures of information
flow such as mutual information. Associative measures of
information flow, which quantify correlation, evaluate how
much information is leaked by an input to the output and
thus provide utility in privacy applications.

The KL divergence however is a causal measure which
directly determines how varying an attacker’s inputs changes
the distribution of public outputs. The extent to which an
attacker’s input changes the system output will mark the
defender’s ability to distinguish outputs under attack from
outputs under normal operation and thus detect the presence
of an adversary. While the software security community has
begun to investigate causal measures of information flow
for violation detection [26], to our knowledge, the ensuing
results will be the first work applied to physical systems.

To close the section we attempt to categorize adversarial
policies which generate information flows bounded above
by ε when the defender implements a specific set of control
policies or has a specific model.

Definition 5: Let U denote denote some fixed set of or-
dered pairs (M∗,U∗0:T−1) consisting of models and defender
control strategies. A permissible attack (Ua0:T−1,Da0:T ) gen-
erates a U conditional ε- weak information flow if for all
(U0:T−1,M) ∈ U, IFT ≤ ε.
Several special cases which satisfy this definition have arisen
in the literature. For instance, a replay attack, generates an

5067



information flow bounded above by ε only for certain classes
of models and strategies. Another special case is below.

Definition 6: An adversary generates a M conditional ε-
weak information flow if for a specific model M, IFT ≤ ε,
regardless of the defender’s policy U0:T−1.
This special case, where we remove any constraints on the
defender’s policy, is equivalent to ε-stealthiness in [10] and
contains false data injections and zero dynamic attacks which
we consider in section VI. We now consider defender policies
and system design which elicit information flows.

Definition 7: A change in the systemM or a permissible
control policy U0:T−1 generates a Ua conditional ε- strong
information flow if for (Ua0:T−1,Da0:T ) ∈ Ua, IFT ≥ ε.
The preceding definition characterizes active detection where
an adversary changes system parameters or his control policy
to create an information flow. We will examine this topic
further in section VII.

V. PASSIVE DETECTION

In this section we motivate the KL divergence as a
tool to quantify the passive detectability of an adversary
and evaluate the special case of M conditional ε- weak
information flows. Specifically, we show that this measure is
directly related to the optimal decay rate for the probability
of false alarm. We now have the following result from [10].

Theorem 8: Let 0 < δ < 1. Define αk the probability of
false alarm and βk the probability of detection as follows

αk , Pr (Ψk(Ik) = H1|H0) , βk , Pr (Ψk(Ik) = H1|H1) .

Suppose lim sup
k→∞

IFk ≥ ε. Then there exists a detector Ψk

such that
βk ≥ 1− δ, ∀k, lim sup

k→∞
− 1

k+1 log(αk) ≥ ε.
Alternatively, suppose additionally that the sequences gener-
ated by y0:k operating normally and under attack are ergodic.
Suppose lim

k→∞
IFk ≤ ε. Then for all detectors Ψk

βk ≥ 1− δ, ∀k =⇒ lim sup
k→∞

− 1

k + 1
log(αk) ≤ ε.

From Theorem 8, the information flow is essentially equiva-
lent to the optimal decay rate in the probability of false alarm
and an adversary who generates an M conditional ε-weak
information flow will have false alarm rate bounded above
by ε. As a result, information flow allows us to generically
evaluate and compare the detectability of different attack
policies. However unlike other potential measures such as
βk, the KL divergence can be efficiently characterized.

We note that it may be difficult to compute the KL
divergence of the outputs y0:T−1 directly. For instance, if
a control policy includes nonlinear feedback, the Gaussian
property of the output is destroyed, likely removing the
ability to obtain closed form distributions of the output. We
can instead consider the normalized residue zk, obtained
from a Kalman filter [27].

x̂k+1|k = Ax̂k|k +Buk, x̂k|k = (I −KkC)x̂k|k−1 +Kkyk,

Pk+1|k = APk|k−1A
T +Q−AKkCPk|k−1A

T ,

Kk = Pk|k−1C
T (CPk|k−1C

T +R)−1, (7)

zk = (CPk|k−1C
T +R)−

1
2 (yk − Cx̂k|k−1). (8)

The Kalman filter computes optimal state estimates x̂k|k−1
and x̂k of xk. The normalized residue zk is a normalized
measure of the difference between the defender’s outputs
and the expected outputs derived from the state estimate.

Lemma 9: [28] f(z0:k|I−1) = N (0, I) when the system
is operating normally. Given strategy U0:k−1 and x̂0|−1, z0:k
is an invertible function of y0:k.
Because the residues and outputs are related by an invertible
mapping, we can show their KL divergences are equal [22].

Theorem 10: The KL divergence between sensor outputs
and between residues are equivalent.

DKL(DM,U0:T−1,Ua
0:T−1,D

a
0:T

y0:T ||DM,U0:T−1,0,0
y0:T )

= DKL(DM,U0:T−1,Ua
0:T−1,D

a
0:T

z0:T ||DM,U0:T−1,0,0
z0:T ).

Due to theorem 10, we can analyze the residues operating
normally and under attack instead of the system output when
computing the information flow. Residues under normal
operation have a known zero-mean Gaussian distribution. If
the distribution of the residue under attack remains Gaussian,
a closed form solution exists for the KL divergence. The
KL divergence between two Gaussian distributions N1 =
N1(µ1,Σ1) and N0 = N0(µ0,Σ0) with µ1 ∈ Rl is [21]

DKL(N1||N0) = − l
2

+
1

2
tr(Σ−10 Σ1) +

1

2
log det

(
Σ0Σ−11

)
+

1

2
(µ1 − µ0)TΣ−10 (µ1 − µ0). (9)

If the attacker’s policy is independent of the defender’s
outputs, it is known that the distribution of residues under
attack remain Gaussian. In general however, it may still
be difficult to compute the KL divergence of z0:k since it
is a growing sequence. Fortunately, we can leverage the
independence of the residues to obtain the following bound.

Theorem 11: The information flow generated by an adver-
sary can be lower bounded by the sum of the residue-based
KL divergences generated at each time step.

IFT ≥
T∑
k=0

DKL(DM,U0:k−1,Ua
0:k−1,D

a
0:k

zk ||DM,U0:k−1,0,0
zk )

T + 1
.

Proof:
By Theorem 10 and Bayes rule we know

IFT =
T∑
k=0

DKL(DM,U0:k−1,Ua
0:k−1,D

a
0:k

zk|z0:k−1
||DM,U0:k−1,0,0

zk )

T + 1
.

Thus, we observe

IFT − IFLBT =

T∑
k=0

I
M,U0:k−1,Ua

0:k−1,D
a
0:k

zk,z0:k−1

k + 1
.

where IFLBT is the obtained lower bound and Izk,z0:k−1
is

the mutual information [21] which is nonnegative.
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Instead of computing the KL divergence of vectors z0:k ∈
Rmk, we can instead obtain a recursive lower bound by
computing the sum of T divergences for vectors zk ∈ Rm.
Also, the gap between the lower bound and IFT is the scaled
sum of mutual informations between zk and z0:k−1 so that
if attack residues are independent, the gap is 0.

VI. STEALTHY ADVERSARIAL BEHAVIOR

We next describe attacks which generate M conditional
ε-weak information flows, where regardless of the defender’s
policy the attacker remains stealthy. Understanding these
scenarios motivate resilient design of M and also allow us
to capture and extend research on left invertibility and false
data injection attacks. The first scenario we consider is when
ε = 0 where there exists probabilistic noninterference.

Let ya0:T denote outputs realized from the distribution
under attack DM,U0:T−1,Ua

0:T−1,D
a
0:T

y0:T and y0:T denote outputs
realized from the normal system DM,U0:T−1,0,0

y0:T . If U0:T−1 =
0, then, due to the linearity of our model M,

ya0:T = y0:T + ∆y0:T (da0:T , u
a
0:T−1), (10)

∆xk+1 = A∆xk +Bauak, ∆x0 = 0, (11)
∆yk = C∆xk +Dadak. (12)

We now obtain the following result.
Theorem 12: A nonzero attack strategy (Ua0:T−1,Da0:T )

generates a M conditional 0-weak information flow if and
only if ∆y0:T (da0:T , u

a
0:T−1) = 0 with probability 1.

Proof: Suppose ∆y0:T (da0:T , u
a
0:T−1) = 0 with proba-

bility 1−ε where ε > 0. Then for U0:T−1 = 0, we have with
probability 1 − ε, ya0:T 6= y0:T . Thus, the KL divergence is
greater than 0. Now instead suppose ∆y0:T (da0:T , u

a
0:T−1) =

0 with probability 1. From (3) and (4), we observe that (10)
holds if ∆y0:T (da0:T , u

a
0:T−1) = 0. This is based on the fact

that the defender’s control strategy will not change if the
output does not change. Thus, if ∆y0:T (da0:T , u

a
0:T−1) = 0

with probability 1, then ya0:T = y0:T with probability 1.
Therefore, the KL divergence and information flow is 0.
We have shown that there exists a 0-information flow attack
if and only if there exists nontrivial (Ua0:T−1,Da0:T ) which
satisfy (11), (12) for 0 ≤ k ≤ T . For long enough time
horizon this is in fact equivalent to left invertibility.

Theorem 13: Let B̂a =
[
Ba 0n×m′

]
, D̂a =[

0m×p′ Da
]
. Suppose T ≥ n − p′ + 1. A nonzero adver-

sarial policy (Ua0:T−1,Da0:T ) can generate a M conditional
0-weak information flow if and only if (A, B̂a, C, D̂a) is not
left invertible.

Proof: The result follows directly from Theorem 12
and Corollary 1 of [29].
Left invertibility in control systems has been well studied in
previous work in CPS security as a subset of zero dynamic
attacks [7]. Our general framework of information flows
is able to recover this property and consequently, we can
directly apply previous results related to left invertibility in
our study of 0-weak information flows. For instance, we can
consider conditions on M which allow for the existence of

0 information flow attacks to motivate resilient design of the
system (A,B,C) and channel security (Ba, Da).

Theorem 14: [7] Let T ≥ n − p′ + 1. An attack policy
can create a M conditional 0-weak information flow if and
only if rank

(
P̄ (M)

)
< n+ p′ +m′, ∀ λ ∈ C

where P̄ (M) =

[
λI −A B̂a

C D̂a

]
.

We now wish to consider the case of M conditional ε-
weak information flows for ε > 0. However, we assume that
the adversary injects additive inputs which are independent
of the defender’s system inputs and outputs. Thus, we assume

uak = Uak (ua0:k−1, d
a
0:k,M̂, Ĉ, D̂),

dak = Dak(ua0:k−1, d
a
0:k−1,M̂, Ĉ, D̂). (13)

Such attacks are known as false data injection attacks.
Theorem 15: Consider an admissible adversarial policy

which satisfies (13). Then,

IFT =
1

2(T + 1)
∆zT0:T∆z0:T , (14)

where ∆zk satisfies ∆e0|−1 = 0 and

∆ek+1|k = (A−AKkC)∆ek|k−1 +Bauak −AKkD
adak,

∆zk = (CPk|k−1C
T +R)−

1
2

(
C∆ek|k−1 +Dadak

)
. (15)

Proof: See Appendix I.
Thus, the information flow is proportional to the norm of
∆zk squared where ∆zk represents the bias the adversary
injects on the normalized residue. The norm of the residue
bias has been previously used as a measure of the stealthiness
in false data injection attacks. For instance, [11] and [12], in
their investigation of false data injection attacks, restrict

‖∆zk‖2 ≤M ∀k. (16)

with the motivation that the increase in βk will be bounded
by some M ′ in this scenario. For M ≤ 2ε, such an
attacker generates aM conditional ε-weak information flow.
Consequently we have the following result.

Theorem 16: Suppose a false data injection attack satisfies
‖∆zk‖2 ≤ 2ε ∀k. Then, for δ > 0 there exists a detector
such that βk ≥ 1− δ and lim sup

k→∞
− log(αk)

k+1 = ε.

Again, the results obtained in [11], evaluating models M
and attacks Da0:k which stealthily destabilize a system, and
[12], estimating the bias an adversary can stealthily inject
on the system state in M, can all be reframed as attacks
which generateM conditional ε-weak information flow. This
refinement of existing results allows us to now quantify
detectability in addition to system impact.

VII. ACTIVE DETECTION OF ADVERSARIAL BEHAVIOR

In this section, we will revisit and extend results related
to the active detection of replay attacks using the proposed
measure of information flow. Recall that in active detection,
the defender changes the system or his policy to elicit
an information flow. Specifically, we will use information
flows to determine when replay attacks are stealthy. We will
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then extend previous work by using information flows to
characterize optimal detection with watermarking.

In a replay attack, the adversary observes a sequence of
measurements from y−N to y−N+T−1. Then, without loss of
generality, at time 0, the attacker replays these measurements.
Here, we will assume −N is large so that the adversary
has an adequate buffer and that the replayed outputs are
independent of the current outputs. Moreover, we assume
the system at time −N is in steady state. We first argue that
a replay attack generates a U conditional ε-weak information
flow for a large class of systems and common control
policies. For instance, consider a defender that uses state
feedback with gain L so Uk(Ik) = Lx̂k|k.

Let A = (A + BL)(I − KC) and P = CPCT + R. It
has been shown that [17]

zk = zk−N − P−
1
2CAk(x̂0|−1 − x̂−N |−N−1). (17)

If M and U0:k−1 generate stable A the second term con-
verges to 0. Therefore, we have the following result regarding
the information flow with proof in appendix II.

Theorem 17: Suppose that our control system (1) with
state feedback control is under replay attack, where ρ(A) <
1. Then, lim

T→∞
IFT = 0.

If A(M,U0:k−1) is stable, the adversary’s actions are
asymptotically undetectable since the information flow is
0. This result was previously obtained in [16] by instead
showing that continuous functions of the defender’s informa-
tion are indistinguishable under normal and replay scenarios.
Information flows allow us to recover this result via a general
CPS security framework.

In this example, the defender’s control strategy U0:T−1
of state feedback, leaves the system vulnerable to a replay
attack. The defender ideally should be able to perform
active detection and determine a control strategy which
simultaneously addresses system objectives while creating
an information flow from a replay adversary.

Watermarking techniques allow the defender to increase
the information flow from the attacker input to defender
output and as a result create an Ua conditional ε-strong
information flow, where Ua contains the replay attack policy.
In watermarking, noisy control inputs are used with uk =
Uk(Ik) = Lx̂k|k + ∆uk where ∆uk ∼ N (0,Q). Note that
while the watermark is random, it can be predetermined
offline so that Uk(Ik) remains a deterministic function. We
now show watermarking creates a strong information flow.

Theorem 18: Suppose the system (1) with state feedback
control and watermarking is under replay attack, where
ρ(A) < 1. Then, almost surely lim

T→∞
IFT ≥ ε, where

ε =
tr
(
P−1CΣCT

)
2

, Σ = AΣAT +BQBT .

Proof: See Appendix III.
From the theorem above, the defender can make the

information flow from an adversarial input arbitrarily large
by increasing tr

(
P−1CΣCT

)
which is a linear function
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Fig. 1. Information Flow generated by a replay attack. The information
flow as a function of k in the presence of watermarking is included along
with its lower bound ε, and the information flow generated when physical
watermarking is not present

of the watermark covariance Q. In fact, previous work
on watermarking [17] does aim to design watermarks by
maximizing tr

(
P−1CΣCT

)
subject to constraints on control

performance in the system. Thus, our results motivate the
choice of this objective function. The use of information
flows also allows us to extend previous results to analyze
optimal detection of replay attacks under watermarking sce-
narios.

Corollary 19: Assume system (1) with state feedback
control and watermarking is under replay attack, where
ρ(A) < 1. Then for δ > 0 there exists a detector such that
βk ≥ 1− δ, ∀ k and

lim sup
k→∞

− 1

k + 1
log(αk) ≥

tr
(
P−1CΣCT

)
2

. (18)

Proof: The result follows from Theorems 18 and 8.
We simulate a vehicle moving along a single axis [11]

under replay attack. Here, we assume that the defender
obtains the gain L using a linear quadratic Gaussian (LQG)
controller which attempts minimize a cost J given by

J = lim
T→∞

1

T + 1
E

[
T∑
k=0

xTk xk + uTk uk

]
.

The LQG cost increases linearly with Q. We select the
covariance Q of the watermark so that ∆J , the increased
cost due to watermarking, is 40% of the optimal J . Here,
we simulate the system 1000 times over a horizon of 200
steps. We plot the average information flow in Fig 1, both
with watermarking and without watermarking. As expected
from Theorem 17, in the absence of watermarking, the
information flow generated by a replay attack converges to
0. If physical watermarking is implemented, the information
flow generated by an adversary has a lower bound ε which
grows linearly with Q. We implement a Neyman Pearson
detector [21] and plot the average probability of false alarm
and detection as a function of k in Fig 2.
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Fig. 2. Probability of detection and probability of false alarm vs time for
a Neyman Pearson Detector

VIII. CONCLUSION

In this article, we introduced a physical measure of infor-
mation flow to characterize detection in CPS and provide a
unified approach to dealing with security in both the cyber
and physical domains. We proposed the KL divergence as
a measure of information flow. We motivate its use through
results in optimal passive detection and computational ease
of evaluation. We examined attacks which are stealthy for
fixed models, and all input strategies, recovering results
related to left invertibility and false data injection attacks.
Finally, we investigated replay attacks and used information
flows to quantify optimal detection performance with physi-
cal watermarking. We close by noting that information flow
tools are amenable to true CPS analysis. In particular, we can
consider a richer set of problems emcompassing both cyber
and physical domains by leveraging the proposed results in
physical security and existing parallels in cyber and software
security. Approaching these general problems will mark the
next stage of obtaining a unified paradigm for addressing
CPS security.

APPENDIX I
PROOF OF THEOREM 15

Proof: Let ek|k−1 = xk − x̂k|k−1. From (3),(4), and
(7), we obtain

ek+1|k = (A−AKkC)ek|k−1 +Bauak + wk −AKkvk

−AKkD
adak,

zk = (CPk|k−1C
T +R)−

1
2

(
Cek|k−1 + vk +Dadak

)
.

Let zsk be the residue under normal operation. Then,

esk+1|k = (A−AKkC)esk|k−1+wk−AKkvk, e
s
0|−1 = e0|−1

zsk = (CPk|k−1C
T +R)−

1
2

(
Cesk|k−1 + vk

)
.

It can be seen from the linearity of the system that

zk = zsk + ∆zk,

and that (15) holds. Moreover, from an inductive argu-
ment, we see that ∆zk is a deterministic variable since
Ua0:k−1 and Da0:k are independent of y0:k. As a result,

DM,U0:k−1,Ua
0:k−1,D

a
0:k

z0:k = N (∆z0:k, I). Finally, from (9) and
Theorem 15, we have

DKL (N (µ1,Σ1),N (µ2,Σ1)) =
1

2
‖Σ−

1
2

1 (µ1 − µ2)‖2.

The result immediately follows.

APPENDIX II
PROOF OF THEOREM 17

Proof: We observe from (17) that

z0:k ∼ N (µr,Σr), (19)

µr(jm : jm+m− 1) = E[zj ] = −P− 1
2CAkx̂0|−1, (20)

Σr(jm : jm+m− 1, lm : lm+m− 1) = Cov(zj , z
T
l ),

= P− 1
2CAjW(Al)TCTP− 1

2 + δ(l −m)I, (21)

whereW is the steady state covariance of x̂k|k−1 and δ refers
to the discrete delta dirac function. From (9), Theorem 10,
and Sylvester’s determinant theorem we have

DKL(DM,U0:k−1,Ua
0:k−1,D

a
0:k

y0:k ||DM,U0:k−1,0,0
y0:k

) =
c1 + c2 + c3

2

where

c1 = tr

 k∑
j=0

P− 1
2CAjW(Aj)TCTP− 1

2

 ,

c2 =
k∑
j=0

x̂T0|−1(Aj)TCTP−1CAj x̂0|−1,

c3 = − log det

I +

k∑
j=0

W 1
2 (Aj)TCTP−1CAjW 1

2

 .

Let X1 and X2 be given by

X1 =
∞∑
j=0

AjW(Aj)T = AX1AT +W,

X2 =
∞∑
j=0

(Aj)TCTP−1CAj = ATX2A+ CTP−1C.

From Lyapunov’s equation and sinceA is stable, the matrices
X1 and X2 exist and are bounded. Since c1, c2, and |c3| are
monotonic in k, we have for all k

c1 ≤ tr
(
P− 1

2CX1C
TP− 1

2

)
, c2 ≤ x̂T0|−1X2x̂

T
0|−1,

|c3| ≤ log det
(
I +W 1

2X2W
1
2

)
.

Consequently, for all k there exists M∗ satisfying

DKL(DM,U0:k−1,Ua
0:k−1,D

a
0:k

y0:k ||DM,U0:k−1,0,0
y0:k

) ≤M∗,

Dividing by k + 1, the result follows.
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APPENDIX III
PROOF OF THEOREM 24

Proof: When under a replay attack, we have [17]

zk = zk−N − P−
1
2CAk(x̂0|−1 − x̂−N |−N−1) (22)

− P− 1
2C

k−1∑
j=0

Ak−1−jB (∆uj −∆uj−N ) ,

where N is some unknown, but large delay between the
replayed sequence and the true sequence. Thus, under attack
zk ∼ N (µk,Σk + I) with

µk = P− 1
2CAkx̂0|−1 + P− 1

2C
k−1∑
j=0

Ak−1−jB∆uj ,

Σk = P− 1
2C[AkWAk T +

k−1∑
j=0

AjBQBTAj T ]CTP− 1
2 .

Thus, the KL divergence between zk under attack and under
normal operation is given by

DKL(DM,U0:k−1,Ua
0:k−1,D

a
0:k

zk ||DM,U0:k−1,0,0
zk

) =
c1k + c2k + c3k

2
(23)

where

c1k = µTk µk, c2k = − log det (I + Σk) , c3k = tr(Σk).

From [19], it is known that

c2k + c3k ≥ 0. (24)

Furthermore, by the law of large numbers, we know

lim
T→∞

1

T + 1

T∑
k=0

c1k
a.s.→ tr

(
P−1CΣCT

)
. (25)

Using (23), (24) and (25)

lim
T→∞

T∑
k=0

DKL(DM,U0:k−1,Ua
0:k−1,D

a
0:k

zk ||DM,U0:k−1,0,0
zk )

T + 1
≥ ε.

(26)
By Theorem 11, the result immediately follows.
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